

TRABALHO DE RECUPERAÇÃO FINAL 2024

ALUNO (A):	T	URMA:
VALOR: 40,0	Nota:	

INSTRUÇÕES: Todas as questões devem ser respondidas a CANETA.

* TODAS AS QUESTÕES DEVEM SER RESOLVIDAS À CANETA

1A	7	C	LASS	IFICA	CÃO	PERIĆ	DICA	DOS	FLEM	ENTO	S						0
4	2			massa			13	14	15	16	17	2					
,01	2A		COII	Hiassa	s atomic	3A	4A	5A	6A	7A	He 4.00						
3	4	5 6 7 8															10
_i	Be					В	C	N	0	F	Ne						
5,94	9,01	1 —			— Ele	10,8	12,0	14,0	16,0	19.0	20,2						
1	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Na 23.O	Mg 24.3	3B	4B	5B	6B	7B		- 8B	$\overline{}$	1B	2B	AI 27.0	Si 28.1	P 31.0	S 32.1	CI 35.5	Ar 39.9
9	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,1	40,1	45.0	47,9	50,9	52,0	54,9	55.8	58,9	58,7	63,5	65,4	69,7	72,6	74,9	79,0	79,9	83,8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
35,5	87,6	88,9	91,2	92,9	96,0	(99)	101	103	106	108	112	115	119	122	128	127	131
55	56	57-71 Série dos	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lantaní-	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
133	137	deos	179	181	184	186	190	192	195	197	201	204	207	209	(210)	(210)	(222
Fr	Ra	89-103 Série dos	Rf	Db		107	108	109	110	111	112						
(223)	(226)	Actinidios	I NI	DB	Sg	Bh	Hs	Mt	Uun	Uuu	Uub						
				ios Lant								-					
Número Atómico Símbolo		,	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТВ	Dy	Но	Er	Tm	Yb	Lu
			139	140	141	144	(147)	150	152	157	159	163	165	167	169	173	175
	Atômica		Serie d	los Actir		Too	Loo	To.	Los	Too	Ton	Too	100	1			
() - N.º de massa do Isótopo mais estável			Ac	90 Th	91	92 U	93	94	95	96	97	98	99	100	101	102	103
		avei	(227)	232	(231)	238	Np (237)	Pu (242)	Am (243)	Cm (244)	Bk (247)	Cf (251)	Es (254)	Fm	Md	No	Lr
			(221)	202	(231)	200	(237)	(242)	(243)	(244)	(247)	(251)	(254)	(253)	(256)	(254)	(257)

- **01.** Uma garrafa de 1,5 litros, indeformável e seca, foi fechada por uma tampa plástica. A pressão ambiente era de 1,0 atmosfera e a temperatura de 27°C. Em seguida, essa garrafa foi colocada ao sol e, após certo tempo, a temperatura em seu interior subiu para 57°C e a tampa foi arremessada pelo efeito da pressão interna.
 - A) Qual era a pressão interior da garrafa no instante imediatamente anterior à expulsão da tampa plástica?
 - B) Qual é a pressão no interior da garrafa após a saída da tampa? Justifique.
- **02.** A partir de dados enviados de Vênus por sondas espaciais norte-americanas e soviéticas, pode-se considerar que, em certos pontos da superfície desse planeta, a temperatura é de 327 °C e a pressão atmosférica é de 100 atm. Sabendo-se que na superfície da Terra o volume molar de um gás ideal é 24,6 litros a 27°C e 1,00 atm, qual seria o valor desse volume nesses pontos de Vênus?
- **03.** Certa massa gasosa ocupa um volume de 10,0 L a –23°C e 1140 mm Hg. Qual será o volume dessa mesma massa gasosa às CNTP.
- **04.** Uma certa amostra gasosa tem seu volume e sua temperatura absoluta duplicados. O que acontece com sua pressão?
- **05.** Certa massa de gás ocupa um volume de 1 m³ a 323°C, exercendo uma pressão de 1 atm no recipiente que a contém. Reduzindo-se a temperatura para 25°C e o volume ocupado pelo gás para 25 litros, qual será a pressão no sistema, em atm?
- **06.** A pressão total do ar no interior de um pneu era de 2,30 atm quando a temperatura do pneu era 27°C. Depois de se ter rodado um certo tempo com esse pneu, mediu-se novamente a pressão e verificou-se que era agora 2,5 atm. Supondo variação de volume do pneu desprezível, qual a nova temperatura?

07. Qual é o número de moléculas de um gás qualquer, existente em 8,2 L do mesmo, à temperatura de 127°C e à pressão de 6 atm?

(Dado: R = 0.082 atm.L/mol.K)

- **08.** Indique os cálculos necessários para a determinação da massa molecular de um gás, sabendo que 0,800 g desse gás ocupa o volume de 1,12 L a 273°C e 2,00 atm. Qual valor se encontra para a massa molecular desse gás? (Dado: R = 0,082 atm.L/mol.K)
- **09.** Um balão A contém 4 g de O_2 a uma dada temperatura e pressão; um balão B, cuja capacidade é igual a 3/4 da do primeiro, contém N_2 à mesma temperatura que o O_2 , a pressão do N_2 é 4/5 da do O_2 . Qual é a massa de N_2 no balão B?
- **10.** O sulfato de sódio (Na₂SO₄) é uma substância utilizada para fabricar papel e vidros. Para obtê-los, faz-se reagir ácido sulfúrico (H₂SO₄) com cloreto de sódio (NaCl) segundo a equação:

$$H_2SO_4 + 2 \text{ NaC}\ell \rightarrow \text{Na}_2SO_4 + 2 \text{ HC}\ell$$

Partindo-se de 7,0 mols de NaCℓ, calcule as quantidades em mols de H₂SO₄ e HCℓ que podem ser obtidas.

11. Quando se coleta sangue para análises laboratoriais, utiliza-se como agente anticoagulante o citrato de sódio (Na₃C₆H₅O₇). Para obtê-lo, faz-se a reação entre ácido cítrico (C₆H₈O₇) e o hidróxido de sódio (NaOH).

$$1 C_6H_8O_7 + 3 NaOH \rightarrow 1 Na_3C_6H_5O_7 + 3 H_2O$$

Calcule a massa de ácido cítrico consumida para se obter 8 mols de citrato de sódio.

(Dados: H = 1; C = 12; O = 16.)

12. A mistura de uma solução de sulfato de ferro (III) com uma solução de hidróxido de sódio forma um precipitado gelatinoso de hidróxido de ferro (III).

$$Fe_2(SO_4)_{3(aq)} + 6 NaOH_{(aq)} \rightarrow 3 Na_2SO_{4(aq)} + 2 Fe(OH)_{3(s)}$$

Qual a massa de precipitado que se forma quando reage 0,10 mol de íons de ferro (III)?

(Dados: H = 1; O = 16; Fe = 56.)

13. Os produtos de reação química abaixo, Ca(H₂PO₄)₂ e CaSO₄, misturados, representam o fertilizante químico (adubo) denominado superfosfato simples, fonte de P, Ca e S para a nutrição das plantas.

Pela equação, observa-se que ele é obtido industrialmente através da reação da rocha fosfática natural (apatita) $Ca_3(PO_4)_2$ com H_2SO_4 .

(Dados: massas atômicas - Ca = 40; P = 31; O = 16; S = 32; H = 1)

Equação:
$$Ca_3(PO_4)_2 + 2 H_2SO_4 \rightarrow Ca(H_2PO_4)_2 + CaSO_4$$

Superfosfato simples: Ca(H₂PO₄)₂

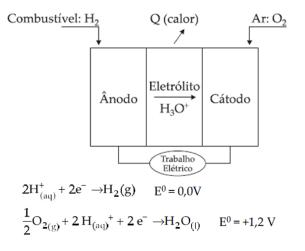
Calcule a massa de H₂SO₄ necessária para converter 1 tonelada de rocha fosfática em superfosfato simples.

14. Em uma experiência na qual o metano (CH₄) queima em oxigênio, gerando dióxido de carbono e água, foram misturados 0,25 mol de metano com 1,25 mol de oxigênio.

(Dadas as massas atômicas: C = 12, H = 1 e O = 16.)

- A) Todo metano foi queimado? Justifique.
- B) Quantos gramas de CO₂ foram produzidos? Justifique.

15. Na reação de 5 g de sódio com água, houve desprendimento de 2,415 L de hidrogênio nas CNTP. Qual é o grau de pureza do sódio?


(Dados: massas atômicas - Na = 23; O = 16; H = 1; volume molar nas CNTP = 22,4 L/mol.)

16. Foram obtidos 100 g de Na₂CO₃ na reação de 1,00 litro de CO₂, a 22,4 atm e 0°C, com excesso de NaOH. Calcule o rendimento da reação:

(Dados: Na =
$$23$$
; C = 12 ; O = 16 .)

$$2 \text{ NaOH} + \text{CO}_2 \rightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O}$$

- 17. Quando se coloca um pedaço de zinco metálico numa solução aquosa diluída de cloreto de cobre (II), de cor azul, observa-se que a intensidade da cor da solução vai diminuindo até se tornar incolor. Ao mesmo tempo, observa se a deposição de cobre metálico sobre o zinco metálico. Ao término da reação, constata-se que uma parte do zinco foi consumida.
 - A) Explique o fenômeno observado. Escreva a equação química correspondente.
 - B) O que acontecerá quando um pedaço de cobre metálico for colocado em uma solução aquosa de cloreto de zinco? Justifique a resposta.
- **18.** Mergulha-se uma lâmina limpa de níquel em uma solução azul de sulfato de cobre. Observa-se que a lâmina fica recoberta por um depósito escuro e que, passado algum tempo, a solução se torna verde. Explique o que ocorreu:
 - A) na lâmina de níquel;
 - B) na solução.
- 19. A obtenção de novas fontes de energia tem sido um dos principais objetivos dos cientistas. Pesquisas com células a combustível para geração direta de energia elétrica vêm sendo realizadas, e dentre as células mais promissoras, destaca-se a do tipo PEMFC (Proton Exchange Membran Fuel Cell), representada na figura. Este tipo de célula utiliza como eletrólito um polímero sólido, o Nafion. A célula opera de forma contínua, onde os gases oxigênio e hidrogênio reagem produzindo água, convertendo a energia química em energia elétrica e térmica. O desenvolvimento dessa tecnologia tem recebido apoio mundial, uma vez que tais células poderão ser utilizadas em veículos muito menos poluentes que os atuais, sem o uso de combustíveis fósseis.

- A) Para a pilha em questão, escreva as semirreações de oxidação e redução e a reação global. Calcule a diferença de potencial da pilha.
- B) Em qual compartimento se dá a formação de água?
- **20.** Escreva as semirreações catódica, anódica e a equação global na eletrólise do cloreto de sódio fundido em cadinho de platina e com eletrodos de platina.